Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves
نویسندگان
چکیده
A method is proposed for accurately describing arbitrary-shaped free boundaries in finitedifference schemes for elastodynamics, in a time-domain velocity-stress framework. The basic idea is as follows: fictitious values of the solution are built in vacuum, and injected into the numerical integration scheme near boundaries. The most original feature of this method is the way in which these fictitious values are calculated. They are based on boundary conditions and compatibility conditions satisfied by the successive spatial derivatives of the solution, up to a given order that depends on the spatial accuracy of the integration scheme adopted. Since the work is mostly done during the preprocessing step, the extra computational cost is negligible. Stress-free conditions can be designed at any arbitrary order without any numerical instability, as numerically checked. Using 10 grid nodes per minimal S-wavelength with a propagation distance of 50 wavelengths yields highly accurate results. With 5 grid nodes per minimal S-wavelength, the solution is less accurate but still acceptable. A subcell resolution of the boundary inside the Cartesian meshing is obtained, and the spurious diffractions induced by staircase descriptions of boundaries are avoided. Contrary to what occurs with the vacuum method, the quality of the numerical solution obtained with this method is almost independent of the angle between the free boundary and the Cartesian meshing.
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملFinite-difference Modeling of High-frequency Rayleigh waves
The finite-difference (FD) method described here is specially developed to model high-frequency Rayleigh-wave propagation in near-surface mediums. Although many FD programs existed for earthquake research and oil exploration, none has been developed to model high-frequency Rayleigh-wave propagation in near-surface elastic mediums when the source and all receivers are on the free-surface. The sc...
متن کاملNumerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملEffect of Rotation and Stiffness on Surface Wave Propagation in a Elastic Layer Lying Over a Generalized Thermodiffusive Elastic Half-Space with Imperfect Boundary
The present investigation is to study the surface waves propagation with imperfect boundary between an isotropic elastic layer of finite thickness and a homogenous isotropic thermodiffusive elastic half- space with rotation in the context of Green-Lindsay (G-L model) theory. The secular equation for surface waves in compact form is derived after developing the mathematical model. The phase velo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008